

Micrometeorite Impact Test of Flex Solar Array Coupon

K. H. Wright

University of Alabama-Huntsville

T. A. Schneider, J. A. Vaughn

NASA-MSFC

B. Hoang, F. Wong, G. Gardiner

Space Systems/Loral, LLC

Background

- SSL is developing an advance, lightweight, flexible28 kW solar array for commercial use
 - Based on Deployable Space Systems (DSS) Rollout Solar Array (ROSA) designs
 - Power level comparable to present SSL rigid solar array design
- Design risk reduction efforts are underway
 - Mechanical evaluation at DSS
 - Thruster plume evaluation at the NASA/JPL
 - Thermal cycle evaluation at the Air Force/AEDC
 - Thermal balance evaluation at the NASA/GRC
 - Micro-meteoroid impact evaluation at the NASA/MSFC

Test Coupon

3 strings with 2 cells per string

The large gap represents separation between strings

The small gap represents separation between cells

within a string

Electrical Configuration					
Test Shot	Impact Side	SAS Volt./Cur.	String A	String B	String C
1	Front	100V/1.1A	High	Low	NP
2	Front	15V/1.1A	NP	Low	High
3	Front	22.5V/1.65A	NP	Low	High
4	Front	150V/1.65A	High	Low	NP
5	Back	150V/1.65A	High	Low	NP

High = Solar Array Simulator (SAS) voltage

Low = SAS return

NP = Not Powered

NASA/MSFC Micro Light Gas Gun (MLGG)

A Nylon pellet (1.76 mm dia. by 1.76 mm length) is used as the debris proxy and reaches speeds > 5km/s

Electrostatic Discharge (ESD) Test Circuit

Impact Results

Impact 5: Temporary Sustained Arc (TSA) event

Impact 5: TSA event

Impact 5: Estimated TSA Current Paths

Summary

- NASA/MSFC has performed impact testing on SSL ROSA coupons
- No Permanent Sustained Arc (PSA) observed for any of the six impacts
 - However, further impact testing may be needed to clarify the results and to demonstrate the ROSA design robustness
- Post-impact observations
 - Local damage only no structural breakdown
 - No visual evidence of arc tracking on Kapton or pyrolization
 - Insulation resistance measurement after impacts same as Beginning-of-Life; namely, > 50 G Ω between all string combinations

14SCT-0022 10