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Internal charging context 

1) High energy particles present in the environment: electrons or proton 
 

2) Penetrate and stop inside the SC: 

ÅElectron with energy from 100s keV to 100 MeV stopped inside the SC 

Å Ion with energy > MeV 
 

3) Deposition of the charge and creation of a RIC Ą electric field buildup 

 

Ą Risk of electrostatic discharge inside the SC payload and/or subsystems 
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Charging model 
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Monte Carlo radiation transport (Geant4/Gras) Charge and dose deposition on the computational 

mesh (Geant4/GRAS) 

Internal charge transport equations solved on the 

computational mesh by a finite element method: 

ÅPoisson equation 

ÅContinuity equation for the net charge 

ÅOhmôs law 

( )

î
í

î
ì

ë

=

=¶Ð+
µ

µ

=Ð¶Ð-

EJ

J
t

Vr

s

r
r

ree

#

0

Conductivity model (inspired from DICTAT): 

ÅField induced conductivity (Adamec and Calderwood) 

Å Bulk conductivity  

Å Radiation induced conductivity 
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Charging model improvements 
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Monte Carlo radiation transport (Geant4/Gras) Charge and dose deposition on the computational 

mesh (Geant4/GRAS) 

Internal charge transport equations solved on the 

computational mesh by a finite element method: 

ÅPoisson equation 

ÅContinuity equation for the net charge 

ÅOhmôs law 
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New conductivity model: 

ÅZero-D model based on band theory: 

- Temperature and Electric field effects 

- Charge and dose deposition rate and accumulation 

- Temporal evolutions Ą RIC build-up and delayed RIC 

ÅConductivity not affected by charge transport (1 Zero-D model by mesh element) 

Semi-implicit solver for time integration 



Conductivity model 

5 Titre présentation 

Model based on band theory of solid :  
Å Single level of localized traps for electrons and holes 

­ deep levels 

Å Electron / hole pairs Generation by the electron 

beam (ionization) 

Å Trapping of free charges  

Å Free charge recombines with a localized charge 

 
System of 4 evolution equations  

 

 

 

 

 

 

 
 

 

 

With generation rate: 
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SPIS-IC modelling chain 
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Dose deposition rate 

from Geant4/GRAS

Charge deposition rate 

from Geant4/GRAS

SPIS-IC Ą 3D time dependent internal 

charging solver 



Validation sequence 
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Grounded cylindrical

supportOptical glass

Irradiation

Grounded cylindrical

supportOptical glass

Irradiation

Batch 1 : 1D case and a simple step Batch 2 : Simplified mother board 

Batch 3 : D-Type connector Batch 4 : Optical lens 

Presented at the poster session: 

See Artenumôs poster 



Test on free dielectric material surface 

Batch 1.2 : Test on step dielectric surface 
Å Configuration induce: 

- Lateral electric field due to thicknesses differences 

(capacitive coupling) 

- Different dose profile on both steps  

- Lateral conduction of the implanted charges.  

Å Material: Teflon® PTFE 

Å Sample configuration: step sample, grounded back face 

Å Irradiation facility: SIRENE 

Irradiation
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Irradiation 
 

40 min 

350 keV 

10 pA.cm-2 

Beam current 

Time 

Irradiation 
 

2 h 

350 keV 

1 pA.cm-2 
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2 h 
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4 h 
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3D maps: comparison irradiation/relaxation 

9 
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During irradiation: 

Å Charge accumulation effect on the step zone Ąvery 

high electric field and current 

Å Charge flow in a conductive path 

During relaxation: 

Å Lateral conduction in the conductive path 

 

During irradiation 

During relaxation 
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Simulation results: electric potential 
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Dielectric 

Vacuum 

Non-uniform potential map: 
Å Low surface potential on the smallest step : bulk 

RIC 

Å Higher potentials on the highest step : 

implantation in the middle 

Charging kinetic dependent on the location: 
Å Higher charging kinetics on 1 mm step : lateral 

charge diffusion  
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Comparison to experimental results 
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Dielectric 

Vacuum 

Non-uniform potential map: 
Å Low surface potential on the smallest step : bulk 

RIC 

Å Higher potentials on the highest step : 

implantation in the middle 

Charging kinetic dependent on the location: 
Å Higher charging kinetics on 1 mm step : lateral 

charge diffusion  

Globally a good agreement with experiment 
Å Charging phase very good agreement 

Å Some discrepancies during relaxation phase 
Å Could be due to an overestimation of conductivity in models 

Å Or to the fact the potential gradients are higher during relaxation 



Test on Sub-D connector 

Objective :  
Å Validation with real passive 

components  

Å Floating and grounded tracks 

Å Implantation above and below floating 

and grounded tracks 

 

Test configuration: 
Å Material: insulating PCT material  

Å Flags 1 and 2 floating 

Å Irradiation facility: SIRENE at 400 keV, 

1.9 pA.cm-2 
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